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Abstract—The coupled frequencies of a hydroelastic system consisting of an elastic shell and a
viscous liquid layer with a free surface have been treated. The system exhibits no z-dependency and
may be either an annular liquid layer around an elastic center shell or a liquid layer inside an elastic
container. The first case has been evaluated numerically, where the influence of the liquid surface
tension parameter, the elasticity parameter of the shell and the thickness of the layer have been
determined. In contrast to the hydroelastic system with an ideal liquid, the system with viscous
liquid exhibits instability of the liquid surface as well as the shell.

NOTATION

radius of liquid, or radius of container shell
radius of shell, or radius of liquid surface
ERj(1 -2
modulus of elasticity
shell wall thickness

, K.,  modified Bessel functions of the first and second kind
diameter ratio, b/a
liquid pressure

¢ polar coordinates

complex frequency, 6 + i@

time

surface tension of liquid

radial velocity component of liquid

angular velocity component of liquid

dynamic viscosity of liquid

radial shell deflection

angular shell deflection

Poisson ratio

kinematic viscosity of liquid, u/p

density of liquid

density of shell material

stream function

frec liquid surface elevation

normal and shear stress
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1. INTRODUCTION

The availability of extended manned space flights in an earth-orbiting laboratory make
unique exploratory experiments possible. Such experiments can hardly be achieved under
the action of gravity on earth. One of these experiments is the behavior of an annular liquid
layer around a cylindrical center shell which on earth would, due to the hydrostatic pressure,
bulge out to a geometric configuration not representing in the undisturbed equilibrium
position a circular annular liquid cylinder. In zero-gravity (or micro-gravity) conditions the
liquid is, however, held only by surface tension and due to the lack of gravity, its cylindrical
form offers a number of advantages for exploratory experiments. The natural frequencies
of such liquid layers, thick or extremely thin, should be known, in order to avoid certain
frequency ranges during the experiments appearing in a space Laboratory, known as the
so-called g-jitter, that may be occurring due to the operation of machines on board, the
motion of the crew, etc. For a rigid center shell the natural frequencies of a liquid layer
around it have been given for frictionless[1] and viscous[2] liquids, where the three-dimen-
sional viscous case has not been evaluated numerically. For a system with no z-dependency
as is being treated here (two-dimensional case), the natural frequencies of frictionless and
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1472 H. F. BAUER

viscous liquids have been presented[3]; numerical results are also exhibited. The condition
of a rigid cylindrical center shell may, however, be violated, such that the shell may be
elastic and perform vibrations. Also of interest is the case of an annular liquid layer inside
a cylindrical container, capable of structural vibrations, which will excite the motion of the
free liquid surface. It is of interest in such cases to know the shifting of the natural
frequencies of the structure and liquid. We are therefore interested in the behavior of the
coupled liquid-structure system as a function of the thickness of the liquid layer, its surfacce
tension, and viscosity and of the elasticity of the shell, its thickness and the density ratio of
the structure and liquid. Lord Rayleigh[4] treated the three-dimensional case of a cylindrical
air column in an infinite medium and found, that the axisymmetric cylindrical configuration
becomes unstable and exhibits its most pronounced instability at an axial wavelength
A; = 12.96a. Lamb([5] performed a similar investigation, where mainly the simple liquid
column was treated. In addition, the remarkable work of Plateau[6], who performed a large
number of useful simulation experiments, should be mentioned. No work, however, has
been performed yct upon the interaction of an elastic structure with a liquid in a zcro-
gravity environment.

The following investigation therefore represents the analysis for the determination of
the coupled frequencies of a two-dimensional liquid—structure system, i.e. a system exhi-
biting no z-dependency. Our main interest is directed towards the behavior of the coupled
viscous liquid-shell system, where the influence of the tension parameter Ta/pv?, the thick-
ness of the liquid layer (k = b/a; diameter ratio of shell and free liquid surface location),
the density ratio of shell and liquid p/p, the thickness of the shell 4 and the elasticity
parameter Ea’/(1 —v?)jv’k? will be investigated.

2. BASIC EQUATIONS AND SOLUTION

Under the influence of an elastic structure a viscous liquid in a micro-gravity environ-
ment will execute damped vibrations, if disturbed (Fig. 1). The problem at hand is therefore
the determination of the coupled frequencies of the elastic structure and the viscous liquid
with a free surface displacement. For small liquid velocity components and small elastic
deflections the governing equations may be linearized. The motion of the viscous liquid
shall be obtained from the Stokes equations
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Fig. 1. Geometry and coordinate system.



Coupled frequencies of a hydroelastic viscous liquid sysiem 1473

where u is the dynamic and v = u/p the kinematic viscosity of the liquid and where
v = ue,+ve, is the velocity of the liquid. These equations have to be solved with the
appropriate boundary conditions. If the free liquid surface is at r = a outside an elastic
inner cylinder at r = b, b < a, the free surface condition is obtained with the kinematic
condition at the free surface 6{(/dt = u from

o,+pr,=0 and 1,=0 atr =a.

This renders

au T() TO aZCn
L T?[C“* ar] M

which, after differentiation with respect to the time ¢, yields the dynamic free surface
condition

op ou T, 0%u
E-z 6r61+a[ 6T>2:|_0 ar=a @
while 7,4, = 0 gives
d/fv 1 du
ré;(;>+;%=0 atr=a. &)

If we denote the elastic deflection of the structure with £ in the radial and # in the

circumferential direction, the boundary condition at the inner cylindrical structure is given
by

ot on
-a—;—u and E—v atr=b. (6)

A cylindrical shell of infinite length renders under the assumption of no motion in the
z-direction the equations{7]:

2 92 4 — b2 92
+¢+_”_[5+2_5+i£]+£’_(i"_)b ¢ [p zua“]_ atr=>b, (1)

o¢ 1262 o 2¢° E o or|D
O 0&  p(1—v)b* ' _bu [ d <v> 1 au]
it E o w\r)Trde| 70 ®

where &= &(p,1), n=n(¢,t), v is Poisson’s ratio, E the elasticity modulus and
D = Ehj(1—¥?), with h as the thickness of the shell. The value p is the density of the elastic
shell. As may be noticed, these equations are coupled with the liquid motion on the right-
hand side. If the liquid is in an elastic container and exhibits an inner free liquid surface,
then the free surface condition at r = b reads:

ap du T,»[ 62u] _
a Haa w2 TagrT0 A=l ®)
and
dfv 1 du
’aT(?) +1%_0 ar=s, (10)
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1474 H. F. Bautk

while the two-dimensional shell eqns are given by expressions (7) and (8), in which the sign
of the term —[p—2u(du/dr))a®/D, has 1o be changed to a plus. In addition b has to be
substituted by a. By introducing the stream function ¥(r, ¢, ), such that the continuity
equation is satisfied identically, i.e.

u=-—--— and v=-— an

one obtains after eliminating the pressure from the Stokes’ eqns (1) and (2), the partial
differential equation

A(A‘I‘—la—\y>=0 (12)
v Ot
where

A___(i_*_l 0 1 8°

= or? r6r+;_26 2

By the application of the vector operation “divergence” to the Stokes’ eqns, we obtain the
Laplace eqn for the pressure distribution, i.e.

Ap =0. (13)

Assuming for all values (velocities u and v, pressure p and the deflections £ and #), the
dependency

eimnb +31

yields the differential equation for the stream function W*(¥ = W*(r)e™***)

A[B‘P*—%\I’*:l=0 (14)

where

d? 1d m?
dr’ " rdr &

A=

The solution of this equation yields (summations in m have been omitted)

WY¥(r) = Ar'"+BI,,,<\/§r> +C/r’"+DK,,,<\/%r> (15)

where I, and K,,, are the modified Bessel functions of the first and second kind and of order
m. With this result and eqn (11), the velocity distribution is given by

u(r,d),t)=—-ime‘"’"”’[Af""+BI,,,<\ﬁr)/r+C/r’"+'+DK,,,<\/§r>/r:| (16)
or, b, 1) =e""¢*”[Amr’""+B\/£I;,,<\/Er)—Cm/r"‘“+D\/EK;,,(\/§r)jl. (17)
Vv v v v

and
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In this cqn, the prime indicates differentiation with respect to the arguments. The pressure
distribution as obtained from eqn (13) yields

p(r, ¢, 1) = [Er"+ F[rme™*+s. (18)

Introducing eqns (18) and (16) and (17) into the Stokes’ eqn renders a relation of the
constants Eand Fto A and C. It is

E=pisdA and F=—pisC. 19

2.1. Viscous liquid around elastic center shell
If a viscous liquid is placed around an elastic center shell, we have to employ for

the determination of the frequency equation eqns (4)~(8). The radial and circumferential
deflections are given by

E=Xe™*st and 5= Yemte, (20)

From eqns (4) and (5) we obtain

pstAa™t? - ps*Clam- 2+2.9pm{A(m——l)a"’+B[ \/5 I, ,(\/%a) —(m+1)1,,,(\/§a>:|
—C(m+l)/a’”—D|:a\/§Km_,<\/§a)+(m+l)K,,,<\/%a)]}
To 2 m
+7m(m -1)[Aa +BI,,,<\/—a)+C/a’"+DK (\/— )]=0 @n
and

2m(m—-l)a"‘A+B{[2m(m+1)+ﬂz]l’"(\/fa)_2\/Ea.1m_l(f )}
v v v »
+2m(m+1)C/a"‘+D{|:2m(m+l)+ ] (\/é )

ak,,_ ,(\/ )} =0. (22)
Equations (6), with (16) and (17) and k = b/a render

—im[Ab’"+Bl,,(kf >+ bC,,,-I-DK <k\/§a)] = sXb (23)
Amb"’+Ba\/Ek1{,,(kﬁa>—C—T+Da\/ék-K;,(k\[Ea)=sYb. 24)
v v b v v

Introducing the above results, i.e. eqns (16)—(20), into the, shell eqns (7) and (8), renders
two more algebraic equations in the unknown constants 4, B, C and D. We thus obtain:

2m(m-l)b"'A+B{[2m(m+l)+ s—?k’]l,,,(k\/%a)—Zk\ﬁa'l,,._,(k\/%a>}
2
+2m(m+1)b—c,,+u{[2m(m+1)+f%k’]xm<k\/§a>+2k %aK,,.-,(kﬁa)}

imb_ D ﬁ(l—v"),z] _
—TX+III: —E-Sb Y=0 (25

%
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and

E

Ab'"[2u(m— l)m+psb2]+ 2"1#3 l:/\\/% afl, (/\\/%(J) -1, </\\/% a>]
)]
v v v

f
C i
_ ﬁ[z“m('"+ 1)+ psb-]+2umD {k\/
b 1+L(1 2t emty 4 2 v'z)}X+ DY =0. (26)
[2a7%20 T T T meETE

Equations (21)-(26) represent six homogeneous algebraic equations, of which the vanishing
of the coefficient determinant represents the frequency equation (j,/=1,2...6)

10l = 0. (27)

The elements of this determinant are given with

b
' 31 = x*+2xm(m—1)+ TE¥m(m*—1)

812 = 2mxx1,,_ (x)—(m+ DLx)]+ TEm(m?— DI (x)
813 = TEm(m*—1)—[2m(m+ )x*+ x*]
814 = =2mx*[xK,,_ (x)+ (m+ DK, (x)]+ TEm(@m*—1)K,(x)
Si5=08,,=0
Oy = 2m(m—1), 8;; = 2m(m+ 1)+ x¥1(x)—2x1,,_ (x)
da3=2m(m+1), 08,4 = 2m(im+ 1)+ xYK(x)+2xK,, _(x)
O15=20,,=0
O3y = mk"™, O3, =ml(kx), b33 =mlk", 0.4 =mK,(kx)
O35 = —ikx? 834=10
Oqr = mk™, 8,4, = kxI,(kx), 043 =—m/k" (28)
O4q = kxK,(kX), 645=0, 04=—kx’
dsy = 2m(m— DK™, §s; = [2m(m+ 1)+ x*k* U, (kx)=2kx1,,_ (kx)
85y = 2m(m+ )K", 854 = [2m(m+ 1)+ xkYK,(kx)+ 2kxK, _ ,(kx)]
dss = —ima, 8s¢= afm®+ Bkx*]
8e1 = k"2m(m—1)+k*x?),  8qy = 2mikxI,(kx)— I, (kx))
8oy = —[2m(m+ 1)+ k2x k™
Og4 = 2mlkxK; (kx)— K. (kx)]

. h? :
665 = —za[l + m(m4—2m2+ 1)+Bk2X4]

566 = oam.

It may be seen, that for a rigid structure the elements of the fifth and sixth line and column
vanish. We then obtain the results previously derived by Bauer{3]. Frictionless liquid renders
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the remaining elements

T, T, . s
6,,=s2+ﬁ%m(m2—1), 5|3=|:52—p*003m(m‘—1)} de1 = K™, 563=—p,

. h? .
Ogs = ‘la{] + ‘142"0—2'122(”1"-— l)‘+/-)ysz},
0¢6 =am, 03 =mk", b8y;=5

where

For a rigid structure we obtain the frequencies of the frictionless liquid (Fig. 2)

) Tom(m*—1)(1 k™)
T == 3 I
pa’(1+k“™)

while for no liquid at all, the frequency[7] below is obtained. For an elastic cylinder without
a liquid layer the determinant reduces to

655 556

=0
665 566

which yields the frequencies

h? 5
2 — 2—
m+1+ 12b2(m 1)

5
2

_ E {
T 2501 - )b

F \/m“—2m2+ 1—2(m?*~ l)’i + (i—>(m2— 1)‘}
1262 144p*

as was also shown for the simple shell without z-dependency by Reismann and Pawlik[8].
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Fig. 2. Uncoupled liquid frequency for frictionless liquid.
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2.2. Viscous liquid inside an elastic shell
If the viscous liquid is inside an elastic container r = g with a free liquid surface at
r = b, we have to employ the following for the determination of the frequency equation

¢ an
b—l—u and E—v atr=a 29)

as well as eqns (7) and (8) and (9) and (10) at r = @, where b has to be substituted by a.
From eqns (9) and (10), we obtain eqn (21) in which T, has to be replaced by — T, and «
by b. Equation (22) which stems from eqn (10) needs only an exchange of a by the value 4.
From the above eqns (29), eqns (23) and (24) are obtained, if in these, & is set equal to unity
and b is replaced by a. Finally, the shell eqns give eqns (25) and (26), in which k = 1 and b
has to be replaced by a. The elements of the frequency determinant are therefore given by :

811 = k*x*+ 2k X m(m — 1) — T*km(m*— 1)

81y = 2mk*x?kxI,,_ \(kx)— (m~+ 1)1 (kx)]— T*km(m*~1)I,,(kx)

8,3 = — T*¥m(m?—1)—[2m(m+ 1)k*x*+ k*x*]

8,4 = —2mk*x{kxK,,_ ,(kx)+ (m+ K, (kx)] — T*em(m*— 1)K, (kx)

515 =0,,=0

81 = 2m(m—1Dk™, 8y, = 2m(m+1)+k*x*1,(kx)—2kx1,_ (kx)

613 = 2m(m+ l)k_m, 624 = [2m(m+ 1)+k2x2]Km(kx)+2kam_ 1(kx)

035 =1020=0

651 =m, by =ml(x), 633=m, 8= K,(x)

835 =—ix?, 83=10

by =m, 04 =xI(x), bs3=—m, b4a=xK,(x), 045=0, 04= -x?

851 =2m(m—1), b5, = [2mm+ 1)+ x*1,(x)—2xI,_ (x)

85y =2m(m+1), &ss=[2mm+1)+xIK,(x)+2xK,,_(x)

555=—'ima, 656=a[m2+ﬁx4]

861 = —[2m(m—1)+x%, &6 = =2mxI,(x)—I(x)], de3=[2m(m+1)+x7]
2

S¢s = —2m[xK,(x)— K, (X)), O¢s= —ia[l + é;z(m‘——2m2+ 1)+Bx‘]

666 = oam.

With these results the numerical values of the coupled frequencies may be obtained.

3. NUMERICAL EVALUATIONS AND CONCLUSIONS

For a liquid column around an elastic center shell the frequency eqn (27), with the
elements (28) has been evaluated numerically for the various parameters of surface tension
Toa/pv?, of density ratio p/p, shell wall thickness ratio h/a, diameter ratio k = b/a and
stiffness parameter y = p(1 —¥?)v*k?/Ea®. The results are given as real (——) and imaginary
parts (-—-) of S = (6a?/v)+ (ida*/v) as a function of the ratio of the shell diameter to the
liquid diameter k = b/a. This means, that if & is in the vicinity of & = 1, the liquid column
is a very thin one, while with decreasing magnitude of &, the annular liquid column becomes
thicker. We notice first of all, that for a viscous liquid system more than one root appears
for each mode m. The numerical evaluation has been restricted to the mode m = 2, for
which the natural frequency for a frictionless liquid around a rigid center shell may be



Coupled frequencies of a hydroelastic viscous liquid system 1479

obtained from eqn (30) (Fig. 2). This root is represented as S in the following figures. The
natural frequencies of the non-viscous liquid are proportional to the square root of the
surface tension T, proportional to the inverse of the square root of the density of the liquid
are exhibited in Fig. 2 as function of the diameter ratio k = b/a. It decreases with increasing
diameter ratio k = b/a. The uncoupled natural frequencies for m = 2 and viscous liquid
around a rigid center shell is marked with y = 0 (Fig. 3a), which expresses nothing but the
limit casc of the modulus of clasticity £ — 00.The uncoupled frequencies of the clastic shell
with no liquid around it are shown in Fig. 4a as horizontal lines (--—-— ), exhibiting only
an imaginary part. We are now interested in the coupled frequencies of the system, which
yield for each mode, two coupled liquid frequencies (belonging to the oscillatory natural
liquid frequency) and four coupled structural frequencies. In addition, there appear for the
viscous liquid around a rigid center shell, an infinite number of pure real roots in each
mode, which are describing a fast aperiodic motion. In the case of an elastically vibrating
center shell, these roots remain real and render an aperiodic motion (see Fig. 5).

The coupled liquid roots are presented in Fig. 3a for the density ratio p/p = 2, i.e. a
shell density p of twice the density p of the liquid, for a thickness ratio of the shell of
h = 0.01a and a tension parameter Toa/pv? = 1000. The mode shown here is that of m = 2,
which means the vibration is in an elliptic geometry. The parameter y varies in the range
of 1079 <y <1074

The roots for a non-viscous liquid around a rigid shell are given by S, which is a pure
conjugate imaginary root. It shows for increasing diameter ratio k = b/a, first a slight
decrease of frequency, for larger k values (k < 1) then rapidly decreases to zero. The curve
marked with y = 0 is the oscillatory root of the viscous liquid for a rigid center shell, since
y — 0 means, that the elasticity parameter (Ea?/g(1 —v*)v’k?) — oo. This renders the roots
as obtained already by Bauer[3]. It exhibits a damped oscillatory root with a decay
magnitude shown for the real part (——) marked with y = 0. With decreasing liquid
thickness the decay magnitude increases, while the oscillatory part (-—-), i.e. the frequency,
decreases. At about k = b/a &~ 0.83, the frequency of this damped oscillation becomes zero,
indicating that in the range of 0.83 < k < 1, i.e. for the smaller liquid thicknesses, the liquid
layer is no longer able to oscillate, but merely performs an aperiodic motion, which with
increasing k-magnitude exhibits less decay. For thin liquid layers therefore, the aperiodic
motion of the liquid persists for a long time, but it does not oscillate. For a rather stiff shell
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Fig. 3(a). Coupled and uncoupled frequencies of liquid and shell around center shell (-.—.— un-
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of y = 10~ ? the coupled roots of the liquid-shell system show similar behavior as those of
the rigid shell in the lower k range. Above k & 0.79 the decay decreases again and renders
again an aperiodic motion with decreasing liquid layer thickness. For larger y values,
meaning more elastic shell behavior, the roots exhibit increasing decay magnitude and
increasing frequency with increasing k-ratio. This may be seen better in Fig. 3bfory = 10~*
and 10~*

It may be noticed, that for y = 10~® the coupled liquid frequency increases with
decreasing layer thickness and that at k £ 0.8 the liquid motion becomes unstable. Similar
results are obtained for an even less stiff shell (y = 10~%), where with increasing k value.
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the oscillatory frequency increases, while at k¥ £ 0.97 the liquid becomes unstable. Figure
3c exhibits the real and imaginary part of S for y = 10~® as a function of the diameter ratio
k. The values S of the frictionless liquid (----- ) and the damped frequency for the viscous
liquid around a rigid center shell (y = 0) are shown again for convenience. In addition the
coupled structural frequencies are presented. The —--—. .- line represents the uncoupled
structural frequency, which decreases with increasing shell radius b. Again we notice that
the coupled liquid frequency increases with increasing k, while its decay decreases slightly
until at k £ 0.8 the real part of this root becomes positive, indicating an oscillation of high
frequency with increasing amplitude, i.e. oscillatory instability. The coupled structural root
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Fig. 5. Additional root in case of viscous liquid.

exhibits for a thick liquid layer, a very strong decay at a high oscillation frequency. With
decreasing thickness of the liquid layer the decay magnitude decreases rapidly, indicating
a longer oscillatory decay motion with a much smaller frequency. It may be noticed that
the oscillation frequency of the coupled structural motion is much lower than that of the
uncoupled shell motion. Finally at about k & 0.73 the shell ceases to oscillate and performs
for k > 0.73, an aperiodically damped motion. The second structural frequency is very large
and not in the range of the numerical values presented in Fig. 3c.

In Figs 4a and b we present the coupled roots again for an elasticity parameter
y = 10~ % The uncoupled structural frequencies are both shown by the —--—. .- lines. The
liquid frequencies S, for frictionless liquid and that for a viscous liquid around a rigid shell
(y = 0) are again presented for convenience. It may be noticed that the structural frequency
is unstable for all k values and that it is a diverging instability along nearly all the range of
k. In Fig. 4b the range of 0.97 < k < 1 is also shown. It is seen that the coupled structural
frequency [marked as (2)] is divergingly unstable and becomes oscillatorily unstable above
k ~ 0.977. The coupled liquid root is shown and marked as (1). We detect the previously
mentioned instability and a strong decrease of the frequency. As in the case of a rigid shell,
other roots appear for m = 2, which are strongly decaying. In Fig. 5 one of these roots is
exhibited for the rigid shell (y = 0) and for y = 10~ *. We observe here that the additional
root is again a fast decaying aperiodic motion, but that for an elastic shell it remains in a
part of the k range nearly of the same magnitude. Finally the coupled liquid root is presented
in the S plane with the elasticity and tension parameters as variables. It is seen, that
increasing liquid surface tension parameter increases the oscillation frequency and also
slightly increases the decay magnitude (Fig. 6). For decreasing shell stiffness (7) the frequency
of the coupled liquid root is hardly changed, while the decay magnitude strongly increases.
This means, that with a stiffer shell the liquid oscillation exhibits stronger damping. Finally
we determine the location, at which the liquid layer around a rigid center-core ceases to
oscillate (Fig. 7). It may be noticed that with decreasing surface tension parameter Tya/pv?
the liquid layer, for which aperiodic motion occurs, is becoming thicker. For a thick liquid
layer with the surface tension parameter Toa/pv? = 4, the liquid surface oscillates in a
damped fashion only for & < 0.3, while for liquid layers with a thickness of the magnitude
smaller than 0.7a the liquid is not capable of oscillating any longer, but just performs an
aperiodic motion if disturbed.
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Fig. 6. Coupled liquid frequency in S plane.
In conclusion, we may state:

(a) that for a less stiff shell (y = 10~ the coupled liquid root becomes unstable for
very thin liquid layers, k £ 0.97;

(b) that for a stiffer shell, i.e. larger modulus of elasticity (y = 10~"), the coupled liquid
root exhibits an instability for thin layers (k > 0.8) and shows a stronger instability
for thinner layers;

(c) that for an even further increase of E (y = 10~°) the coupled liquid root has a small
instability at k = 1;
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Fig. 7. Area of damped oscillatory and aperiodic motion for liquid around rigid center-core.
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(d) that for a less stiff shell (y = 107%) the structural root for the radial dircction
becomes strongly unstable, exhibiting diverging instability until k = 0.977 and for
even thinner liquid layers (k > 0.977) exhibiting an oscillatory instability.

The physical significance of the obtained results here calls for some discussion. The
main interest appears in that we observe a case where viscosity provides instability, whereas
an idcal liquid always renders stability. Small perturbations of the structure lead to per-
turbations of the liquid surface and vice versa, where in the case of a viscous liquid (for
which different phase relations appear) the flow field of the liquid is quite different to idcal
liquids, which exhibit slipping in an angular direction. These perturbations result in liquid
surface displacements, thus changing the surface tension restoring force. In the case of a
viscous liquid, the additional disturbance in the angular direction by the motion of the
elastic shell, is not adequate to dampen out the perturbation. A similar explanation of the
instability of the coupled motion of the elastic shell may be stated. Figure 4b shows that
the root belonging to the angular (n) motion becomes unstable and that the instability flips
from a diverging to an oscillatory instability for thin liquid layers, where the oscillatory
interaction of the liquid motion is more pronounced. These effects (phase shifts and
additional excitation of the liquid through the angular motion of the elastic shell and
vice versa), which are not present for frictionless liquid seem to be responsible for such
mstabilities.
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